Qualitative Analysis Tools

In part three of my review of software that I use for my academic work, I’m covering that all-time favorite, qualitative analysis tools! I have never seen a topic that gets so many requests for help (mostly from doctoral students) with so few useful answers. So here are a handful of tools that I have found helpful for my dissertation work, which involves qualitative analysis of semi-structured interviews, field notes, and documents.

As always, my main caveat is that these are Mac OS X programs. In fact, almost exclusively. If you’re spending a lot of time with a piece of software, having it behave like an OS native application is not worth the compromise. And as usual, I tend to favor of open source, free, or low-cost options. For the work that I’ve done, the applicable categories include data capture, transcription, coding, and theorizing (which might also apply for some quantitative work, depending on the nature of the beast.)

Data Capture

Sometimes you need screen shots. For this, I just use the Mac OS X built-in tool, Grab (may be under “Utilities” in your Applications folder), which works with keyboard shortcuts – my favorite! However, it grabs tiffs, which aren’t the most friendly format, and no matter what tool you use, screen captures are almost always 72 dpi = not print quality. So I resize to 300 dpi with Photoshop, making sure not to exceed the original file size (interpolated bits look just as bad as low dpi).

Sometimes you need to record a whole session of computer-based interaction. For that, nothing rivals Silverback for functionality and cost. It’s pretty cheap, works like a dream, and is great for capturing your own experiences, or that of participants. It uses your Mac’s built-in camera and mics to pick up the image and sound of the person at the keyboard, while logging and displaying keyboarding and mouseclicks. And it doesn’t make you record your settings until the end, so that’s one less thing to screw up when you’re setting up your session. Brilliant! I have to thank the WattBot CHI 2009 student design competition finalists from Indiana State for this discovery, since I never would have though to look for something like this. I use Silverback to log my own use of online tools for participant observation. It’s really entertaining to watch myself a year ago as I was just starting to use eBird. OK, more like painful. But compared to now, it’s really valuable to have those records of what the experience used to be like.

Transcription

I record all my interviews with a little Olympus digital recorder. It’s probably no longer on the market, but it was about $80 in 2007 and well worth every penny, even though at that time I mistakenly thought that I’d never do qualitative research. It was the second-best product from Olympus at the time, and has a built-in USB to move the files to a computer. Great. Except that all the files are in WMA format. All2MP3 to the rescue – free software is hard to beat. For awhile, I used a different audio converter, but it stopped working with an OS update and then I found this one. It’s dead simple, and despite the warnings that it always gives me about suboptimal formats, it works like a charm, every time.

But once those interviews are translated into a playable format, I still have to transcribe them. It’s good data review, of course, besides being cheaper than hiring someone – depending on your calculations. MacSpeech Dictate (now called Dragon Dictate) is my tool of choice for this task; it’s the Mac equivalent of Dragon Naturally Speaking, for you Windows users out there. Both softwares are owned by the same company, and you basically shouldn’t waste your time with anything else, because they are the market leader for a reason.

I use the voice recognition software to listen to my audio recordings with earbuds, and use the included headset to dictate the interview. The separate audio and voice systems are truly necessary, because if I can hear myself talking, it distracts me from what I’m dictating. It’s not flawless, but once the software was trained and so was I, it has worked pretty well. The big drawback is that it costs about $200. The big plus is that I went from 4-5 hours of transcription time for each hour of recording to 2-3 hours, and that’s a nontrivial improvement! I have definitely saved enough hours to make it a good deal for the grant that paid for it.

If you’re using dictation software, you have to dictate into some other software. And something has to play your audio files, too. Surprisingly enough (or not?), I have found open source software from IBM that works pretty well: it’s called IBM Video Note Taking Utility. Although it was originally PC-native, I begged the developer to encode Mac keyboard shortcuts as well, which he did – awesome!

The software was created for video transcription, but I just use it for audio. It’s very simple: you load up an mp3, it makes a text file, and you can use keyboard shortcuts to skip forward, backward, pause, and speed up or slow down the recording (plus some other stuff I don’t use). There are a couple of quirks, but the price is right and it does exactly what I want without lots of extra confusing stuff going on. Most of my transcription happens at 0.6 times normal speed, so when you take into account some correction time, the fact that I’m transcribing an hour of transcript in 2-3 hours means it’s nearly real-time transcription and there’s very little additional overhead. It’s just not possible to do any transcription at normal speaking speed, because unless you’re a court reporter, you just can’t keep up with what people are saying!

Coding/Annotation

When I first started working on qualitative research, one of my initial tasks was finding coding software that I liked. If you’re not using software for this task, consider joining the digital age. There are better options out there than innumerable 3×5 cards or sticky notes, even if you have to pay for it and spend a little time learning how to use it; the time you save is worth much more than the software costs. After some fairly comprehensive web searching, I was kind of horrified at how bad the options were for Mac-native software. $200 for what? Not much, I’ll tell you that. And from what I’ve seen looking over others’ shoulders, I don’t think the PC stuff is a ton better.

But there was something better than the modernized HyperCard option that I found, and pretty much everything else. And it, too, is open source! TAMS Analyzer has got my back when it comes to qualitative data analysis. It’s super-flexible, has a lot of power for searching, matching, and even visualizing your code sets, and can produce all the same intercoder reliability stats as the pricey licensed software. There’s a bit of learning curve, but I expect that’s true of any fully-featured annotation software. Plus, there’s a server version that has check-in/check-out control, which is awesome if you have multiple coders working on the same texts, and it’s pretty easy to set up (all things considered, you do have to be able to set up a mySQL database.) I have barely scraped the surface in terms of using its full capabilities. I’m constantly finding yet another awesome thing it can do, and I learn the functionality as I need it – all the really powerful stuff it can do doesn’t interfere with using it out of the box, so to speak.

And after you’ve spent some quality time with your coding, the time will come to sort those codes. For this, I use OmniOutliner, another product from the awesome OmniGroup. Once you have a huge heap of codes, the drag-and-drop hierarchical outline functionality is a highly convenient, fairly scalable way to handle getting your codes in order. I’ve done this with note cards, and it’s a big mess, excessively time-consuming by comparison to using digital tools, and wastes a lot of paper that is then hard to store. I also like keeping an “audit trail” of my work, so having the digitally sorted codes (in versioned documents) is a great way to do it.

Theorizing

Ah, theory. That’s what we’re all doing this academic thing for, right? Well, that or fame and glory, and we all know which one of those is more likely.

Everyone has their own way of thinking about this. I draw diagrams. And when I draw diagrams, whether for a poster, paper, or to sort out my own thinking, I use OmniGraffle. I can’t begin to say how awesome this software is, and how much mileage I’ve gotten out of my license cost. Enough that I should pay for it again, that’s how good it is. My husband calls OmniGraffle my “theory software” because when I’m using it, he knows I’m probably working on theory. I find it really useful for diagramming relationships between concepts and thinking visually about abstractions. Depending on the way you approach theorizing, it might be worth a try (free trials!)

So that’s the end of my three-part series on software to support academic work. I hope someone out there finds it useful, and if you do, please give one of these posts a shout-out on your social network of choice. You’ll be doing your academic pals a favor, because we all know that’s how people find information these days. :)

4 thoughts on “Qualitative Analysis Tools

  1. Great post. I agree and have used almost all of the same tools as you. I would add that if it is a large project you are probably going to need a shared online space and to come up early with a naming schema for all of your files. I have *yet* to find any software that helps with inter-rater coding. That said, we used NVivo, which helped with coding and theorizing.

  2. Yes, there are definitely different needs for software to support collaborative research versus individual research. My current work is all dissertation-focused, so very little collaboration (and I miss that a lot!) Maybe I’ll make a follow-up post about how my research collaborators and I use tools to work together. :)

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>